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 a b s t r a c t

The unpredictable and complex nature of disasters underscores the need for a scientific and logical approach 
to improvisational emergency supplier selection (IESS), which is a typical multi-attribute decision-making prob-
lem. This study introduces Partial Ordinal Priority Approach (OPA-P) for IESS under information uncertainty 
and multi-stakeholder involvement. OPA-P contributes to a novel partial-order extension of Ordinal Priority 
Approach, emphasizing the necessity of Pareto-optimal analysis. It consists of two main steps: the first stage 
optimizes decision weights through a linear programming problem using easily accessible and stable ordinal 
preference information to simultaneously determine the weights of experts, attributes, and alternatives; the sec-
ond stage generates the adversarial Hasse diagram for alternative comparison derived from the partial-order 
cumulative transformation set. This diagram streamlines the redundant dominance structure among alternatives 
and provides information on Pareto-optimal and suboptimal alternatives along with their clusters. The proposed 
approach is demonstrated through a case study on IESS for the Zhengzhou mega-rainstorm disaster with sensi-
tivity and comparison analysis for model validation. Overall, the novelty of OPA-P lies in its ability to facilitate 
swift and stable decision-making while identifying potential Pareto-optimal solutions amidst high information 
uncertainty and multi-stakeholder involvement.

1.  Introduction

In today’s high-risk society, disasters such as earthquakes, floods, 
terrorist attacks, and pandemics pose significant threats to human life, 
property, and societal stability (Wang, Wang, Li, & Li, 2022). These 
events often exhibit suddenness, uncertainty, and complexity, compli-
cating efforts to predict and control their impacts (Song, Tappia, Song, 
Shi, & Cheng, 2024). The aftermath of such disasters frequently in-
volves widespread infrastructure damage, transportation disruptions, 
communication breakdowns, and shortages of emergency supplies, lead-
ing to substantial losses in both lives and property (Yan, Hu, Wang, & 
Xia, 2025). A notable example is the COVID-19 outbreak in Wuhan, 
Hubei province, where the rapid spread of the virus overwhelmed the 
medical system, causing a severe shortage of medical resources. Hospi-
tals struggled to handle the surge in infected patients, while frontline 
workers faced the risk of infection due to shortages in personal pro-
tective equipment. This scarcity forced medical personnel to reuse pro-
tective gear, which further exacerbated the risk of viral transmission.
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In response, the Chinese government allocated millions of medical 
masks, protective suits, and thermometers to Hubei to address these ur-
gent needs (People’sDaily, 2020). Therefore, during disaster response, 
the efficiency and resilience of the supply chain are pivotal. Ensuring 
the timely delivery of supplies to affected areas can significantly reduce 
response times, enhance rescue operations, and mitigate disaster-related 
losses (Jiang, Liu, Wang, Ding, & Zhang, 2024). As such, selecting ap-
propriate emergency suppliers is crucial. This process, a type of multi-
attribute decision-making (MADM), involves evaluating and selecting 
suppliers based on multiple incomparable factors while considering the 
diverse interests of various stakeholders (Li, Sun, & Fei, 2025; Liu, Tu, 
Zhang, & Shen, 2024; Zhang, Wei, & Chen, 2022). However, in the con-
text of extreme disasters, traditional supplier selection methods may fall 
short due to the need for rapid decision-making in an environment of 
high uncertainty, where existing pre-disaster supplier arrangements of-
ten fail to meet immediate demands. This highlights the importance 
of improvisational emergency supplier selection (IESS)–a critical and 
evolving process in disaster management. Unlike conventional MADM 
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$r=J$


\begin {equation}\begin {aligned} & w^{\mathcal {J}}_{1}(v^{\mathcal {I}\mathcal {J}}_{i_{2}1}-v^{\mathcal {I}\mathcal {J}}_{i_{1}1})+ \dots +w^{\mathcal {J}}_{J}(v^{\mathcal {I}\mathcal {J}}_{i_{2}J}-v^{\mathcal {I}\mathcal {J}}_{i_{1}J}) \\ \geq & w^{\mathcal {J}}_{J}(v^{\mathcal {I}\mathcal {J}}_{i_{2}1}-v^{\mathcal {I}\mathcal {J}}_{i_{1}1}+ \dots +v^{\mathcal {I}\mathcal {J}}_{i_{2}J}-v^{\mathcal {I}\mathcal {J}}_{i_{1}J}). \end {aligned} \label {eq-18}\end {equation}


$w^{\mathcal {J}}_{1}(v^{\mathcal {I}\mathcal {J}}_{i_{2}1}-v^{\mathcal {I}\mathcal {J}}_{i_{1}1})+w^{\mathcal {J}}_{2}(v^{\mathcal {I}\mathcal {J}}_{i_{2}2}-v^{\mathcal {I}\mathcal {J}}_{i_{1}2})+ \dots + w^{\mathcal {J}}_{J}(v^{\mathcal {I}\mathcal {J}}_{i_{2}J}-v^{\mathcal {I}\mathcal {J}}_{i_{1}J}) \geq 0$


\begin {equation}\begin {aligned} & w^{\mathcal {J}}_{1}(v^{\mathcal {I}\mathcal {J}}_{i_{2}1}-v^{\mathcal {I}\mathcal {J}}_{i_{1}1})+ \dots +w^{\mathcal {J}}_{J}(v^{\mathcal {I}\mathcal {J}}_{i_{2}J}-v^{\mathcal {I}\mathcal {J}}_{i_{1}J}) \\ \geq & w^{\mathcal {J}}_{J}(v^{\mathcal {I}\mathcal {J}}_{i_{2}1}-v^{\mathcal {I}\mathcal {J}}_{i_{1}1}+ \dots +v^{\mathcal {I}\mathcal {J}}_{i_{2}J}-v^{\mathcal {I}\mathcal {J}}_{i_{1}J}) \geq 0. \end {aligned} \label {eq-19}\end {equation}


$w^{POCT}_{i_{1}j} \leq w^{POCT}_{i_{2}j}$
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problems, IESS must address the challenges of rapid, informed decision-
making amidst high uncertainty, often with the involvement of multiple 
stakeholders (Li, Kou, & Peng, 2022a; Su, Zhao, Wei, & Chen, 2022).

Through the literature review, three critical limitations in current 
research have been identified: (1) Most existing MADM methods often 
lack stability and fail to effectively analyze potential Pareto-optimal so-
lutions. This limits the transparency and stability of the decision-making 
process, which could be enhanced by incorporating Pareto-optimal solu-
tions to provide more comprehensive alternatives (Fang, Zhou, & Xiong, 
2024; Wu, Lu, Li, & Deng, 2023). (2) Existing studies heavily rely on ex-
pert opinions, which are easier to obtain but require substantial profes-
sional knowledge for evaluating values, semantic judgments, and pair-
wise comparisons (Afrasiabi, Tavana, & Caprio, 2022). This process is 
cumbersome and time-consuming, especially when dealing with multi-
ple stakeholders, leading to significant variations in decision data that 
can introduce errors and disconnects between decision outcomes and 
actual circumstances. (3) Most existing MADM methods in IESS often 
involve data standardization, expert opinion aggregation, and the pre-
acquisition of weight information, which increases the complexity of 
the model. Additionally, current aggregation methods based on alge-
braic logic often fail to objectively reflect the actual preferences and 
viewpoints of experts, potentially leading to decision outcomes that do 
not align with real-world conditions (Ataei, Mahmoudi, Feylizadeh, & 
Li, 2020).

To overcome the above limitations in IESS, this study proposes the 
Partial Ordinal Priority Approach (OPA-P) for solving the IESS prob-
lem. Specifically, the proposed approach is based on the Ordinal Pri-
ority Approach (OPA) with the ranking data of the experts, attributes, 
and alternatives as model inputs. Based on the ordinal preference, this 
study derives a decision weight optimization model and partial-order 
cumulative transformation to generate the most simplified dominance 
structure of alternatives (adversarial Hasse diagram). The proposed ap-
proach can simultaneously determine the weight of experts, attributes, 
and alternatives and generate dominance structure with information on 
Pareto-optimal alternatives, sub-optimal alternatives, and clustering de-
tails. The primary contribution of this study lies in proposing OPA-P for 
IESS under information uncertainty and multi-stakeholder involvement 
while consider the Pareto-optimal analysis. Specifically:

• Methodology. This study incorporates the partial-order theory into 
the original OPA model for the first time, achieving a partial-order 
extension of OPA. The partial-order cumulative transformation and 
adversarial Hasse diagram generation of OPA-P can effectively iden-
tify potential Pareto-optimal solutions and facilitate more robust 
decision-making.

• Theory. This study demonstrates the theoretical foundation of the 
partial-order set derived from partial-order cumulative transforma-
tion by deriving the order-preserving properties and the its rela-
tionships with the total order set based on a single comprehensive 
evaluation value and the partial order set based on strict Pareto-
optimality. This proof provides a theoretical basis for not only OPA-
P but also other MADM methods in generating dominance structures 
and identifying Pareto-optimal alternatives.

• Practice. This study utilizes OPA-P by integrating a representative 
attribute system for IESS, offering insights and guidance for authen-
tic decision-making processes. Furthermore, OPA-P is not limited to 
IESS but is also applicable to any decision scenario exhibiting similar 
characteristics to IESS.

The remaining parts of this paper are organized as follows: Section 2 
conducts a literature review of the MADM approach in IESS. Section 3 
outlines the evaluation attributes for IESS. In Section 4, the research 
method (OPA-P) is presented. Section 5 employs the IESS of Zhengzhou 
mega-rainstorm disaster as the case study to demonstrate and validate 
OPA-P. Lastly, Section 6 presents the conclusions and outlines future 
directions.

Fig. 1. Implementation steps of the MADM for IESS.

2.  Literature review

When confronted with emergencies, organizations and governments 
require swift access to emergency supplies to cater to people’s fun-
damental needs and facilitate disaster relief operations (Zhang et al., 
2022). The process of selecting emergency suppliers assumes a pivotal 
role, as their product quality, service responsiveness, and supply chain 
reliability directly impact the efficacy of rescue operations and the well-
being of those affected (Wang et al., 2022). The selection of emergency 
suppliers can be conceptualized as a classical MADM problem (Li et al., 
2025; Liu et al., 2024; Zhang et al., 2022). In current research concern-
ing emergency supplier selection, scholars typically execute it in three 
steps, as illustrated in Fig. 1 (Liu, He, Chan, & Wang, 2022). The initial 
step involves gathering decision-making data concerning evaluation at-
tributes, experts, and alternatives, encompassing historical records, sta-
tistical data, or expert opinions. The subsequent step entails determin-
ing the weights assigned to attributes and experts. Ultimately, rational 
MADM methods are utilized to ascertain the comprehensive evaluation 
value for ranking alternatives. However, it is noteworthy that the selec-
tion of emergency suppliers mainly focuses on the emergency prepared-
ness phase, and the decision-making process is typically unrestricted 
by severe time pressures (Li, Yang, & Xiang, 2022b; Liu et al., 2022). 
Nevertheless, disaster events often entail complexity and uncertainty, 
leading to the possibility that pre-selected emergency suppliers may 
not adequately meet the requirements for disaster response (Pamucar, 
Torkayesh, & Biswas, 2022). In such instances, improvisational emer-
gency supplier selection (IESS) becomes essential, exhibiting character-
istics distinct from conventional emergency supplier selection. Specifi-
cally, IESS must efficiently acquire and aggregate expert opinions, con-
sidering incomplete preferences information, to achieve stable decision 
outcomes in the situations characterized by intense time pressure, poor 
quality or difficult accessibility of decision data, and the involvement of 
multiple stakeholders.

In the present IESS research, widely utilized MADM methods encom-
pass prominent techniques such as GRA (Zhang et al., 2022), TOPSIS 
(Afrasiabi et al., 2022; Ge, Yang, Wang, & Shao, 2020), VIKOR (Zhang, 
Zheng, Tian, & Wei, 2023; Zhu & Wang, 2023), TODIM (Liu et al., 2024; 
Wang, Liang, Li, & Luo, 2023), BWM (Song et al., 2024), MARCOS (Rong 
& Yu, 2024), MABAC (Dai, Li, Zhou, & Wu, 2024), MACBETH (Pamu-
car et al., 2022), DEMATEL (Wu & Liao, 2024), and others. Considering 
the challenges associated with acquiring data in emergency situations, 
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only a few studies incorporate objective decision data, while the major-
ity rely on subjective decision data derived from expert opinions due 
to poor data quality. Subjective decision data takes the form of eval-
uation values (Ge et al., 2020), semantic values (Li et al., 2022b; Su 
et al., 2022; Wang et al., 2023), pairwise comparison values (Liu et al., 
2022; Wang et al., 2023), and hybrid subjective data (Wang, 2024c). 
Given the uncertainty, ambiguity of crises, and limitations in expert ex-
perience and available information, the subjective decision data pro-
vided by experts also carries a level of uncertainty and ambiguity. Con-
sequently, some studies apply grey system theory (Wang, 2024b; Zhang 
et al., 2022), fuzzy theory (Ding, Liang, Cheng, & Ji, 2025; Liu, Pan, 
Zhu, & Wu, 2023; Pamucar et al., 2022), and rough set theory (Afrasiabi 
et al., 2022; Pamucar et al., 2022; Rong & Yu, 2024) to enhance sub-
jective decision data, addressing inherent uncertainties and ambiguities. 
Regarding expert opinion aggregation, most studies mainly rely on alge-
braic logic-based aggregation techniques, such as weighted averages and 
geometric means (Ataei et al., 2020; Pamucar et al., 2022). Only a few 
studies explore the application of expert consensus and trust networks 
in the aggregation of expert opinions in IESS (Liu et al., 2024). Addi-
tionally, to account for risk preferences of decision-makers arising in 
emergency scenarios, numerous current studies integrate prospect the-
ory (Zhang et al., 2023), cumulative prospect theory (Liao, Qin, Wu, 
Yazdani, & Zavadskas, 2020; Zhang et al., 2022), and regret theory (Liu 
et al., 2023) into the IESS decision-making process. For example, Ding 
et al. (2025) proposes a new emergency supplier evaluation framework 
that uses probabilistic hesitant fuzzy sets as input data to address the 
problem of expert weight allocation in large-group decision-making by 
introducing a two-layer weight model and incorporat a clustering-based 
method for ranking decision alternatives. Dai et al. (2024) proposes a 
healthcare supplier selection approach using belief distributions as input 
data and combines SMAA and MABAC methods to address uncertain-
ties and incomplete information in decision-making, providing accurate 
rankings of suppliers. Liu et al. (2024) presents a framework for selecting 
emergency material suppliers by using expert evaluations in the form of 
hesitant fuzzy linguistic sets and quantitative data, employing the HF-
ExpTODIM method and game theory to address group decision-making 
challenges under emergency conditions. Su et al. (2022) utilized proba-
bilistic linguistic values provided by experts as input data and employed 
a TODIM approach, augmented with prospect theory, for assessing sup-
pliers, tackling the complexities of MADM in the intricate and dynamic 
environment. 

The essence of the above MADM process lies in projecting the sup-
plier’s performance or utility evaluated by experts on various attributes 
into a single comprehensive evaluation attribute for supplier ranking. 
However, results obtained through the above approach often lack stabil-
ity and fail to analyze potential Pareto-optimal solutions in IESS (Fang 
et al., 2024). The practice has shown that considering Pareto-optimal 
solutions in decision analysis can effectively enhance the transparency 
and stability of decision-making while also providing insights for de-
cision portfolios. In addition, despite the prevailing tendency in most 
studies to rely on expert opinions, which are more readily available 
compared to objective decision data, the evaluation values, semantic 
values, and pairwise comparison values also require the support of sub-
stantial professional knowledge and information (Afrasiabi et al., 2022). 
Experts need to provide specific estimates for alternatives, but this pro-
cess can be cumbersome and time-consuming, especially when obtain-
ing pairwise comparison values. It also needs to incorporate a range 
of methods involving data standardization, expert opinion aggregation, 
and pre-acquisition of weight information, which adds complexity to the 
model and increases the likelihood of errors. Moreover, the involvement 
of multiple stakeholders results in significant variations in decision data. 
However, the current expert opinion aggregation methods based on al-
gebraic logic often struggle to objectively reflect the actual views and 
preferences of experts in the above context (Ataei et al., 2020). Such dis-
parities may lead to a disconnect between decision outcomes and actual 
circumstances.

Ordinal preferences (i.e., ranking data) are generally more acces-
sible for experts to elicit and offer greater stability and reliability for 
decision-makers (Wang, Peng, & Kou, 2021), as they require only com-
parative judgments without quantifying differences among alternatives. 
Thus, utilizing ranking data in IESS represents a promising direction. 
Among various multi-attribute decision-making (MADM) approaches, 
the Ordinal Priority Approach (OPA), proposed by Ataei et al. (2020), 
is an optimization-based method grounded in ordinal preferences and 
has demonstrated potential for solving IESS problems. OPA determines 
the weights of experts, attributes, and alternatives simultaneously by 
solving a linear programming model, eliminating the need for data nor-
malization and expert opinion aggregation. Due to its practical appli-
cability, OPA has gained considerable attention in recent years. Recent 
developments include fuzzy OPA (Zhao, Hendalianpour, & Liu, 2024), 
rough set OPA (Zhao et al., 2024), grey OPA (Mahmoudi, Deng, Javed, 
& Zhang, 2021b), and robust OPA (Mahmoudi, Abbasi, & Deng, 2022b; 
Wang, 2024c) for handling data uncertainty; TOPSIS-OPA (Mahmoudi, 
Deng, Javed, & Yuan, 2021a), DEMATEL-OPA (Zhao et al., 2024), and 
DGRA-OPA (Wang, 2024b) for large-scale group decision-making; and 
DEA-OPA (Cui & Wang, 2024; Cui, Wang, Li, & Bai, 2025; Mahmoudi, 
Abbasi, & Deng, 2022a) for relative efficiency analysis. However, no 
study has yet examined the extension of OPA under partial order theory, 
which could offer new insights into Pareto analysis in decision-making 
problems.

Hence, this research endeavors to present a novel MADM method 
based on OPA for IESS that considers information uncertainty, multi-
stakeholder involvement, and Pareto-optimal analysis. It leverages more 
reliable and easily accessible ranking data as input, eliminating the ne-
cessity for data standardization, expert opinion aggregation, and pre-
weight acquisition techniques. 

3.  Evaluation attributes of IESS

This section presents the evaluation attributes in alignment with the 
objectives of IESS obtained from literature, focusing on supplier emer-
gency response capability and emergency supply capacity, as outlined 
in Table 1.

3.1.  Supplier emergency response capability

Disasters cause instability, urgency, and complexity, which can dis-
rupt supply chains, delay logistics, and lead to inventory shortages, high-
lighting the critical role of suppliers’ emergency response capabilities. 
Emergency response capability refers to a supplier’s ability to swiftly 
adapt supply chains to maintain continuous production and delivery 
during crises (Pamucar et al., 2022). Based on literature review, five 
core attributes are identified to assess emergency response capability: 
response speed (C1), delivery reliability (C2), geographic coverage (C3), 
sustainability (C4), and collaborative experience and credibility (C5).

• Response speed (C1): Response speed refers to the supplier’s abil-
ity to quickly implement emergency measures, ensuring prompt re-
sponse and minimizing delays (Li et al., 2022a; Pamucar, Yazdani, 
Obradovic, Kumar, & Torres-Jiménez, 2020).

Table 1 
Evaluation attributes for IESS.
 Perspective  Attribute

Supplier emergency response capability

 Response speed (C1)
 Delivery reliability (C2)
 Geographic coverage (C3)
 Operation sustainability (C4)
 Collaborative experience and credibility (C5)

Emergency supply capacity
 Availability (C6)
 Quality (C7)
 Cost-effectiveness (C8)
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• Delivery reliability (C2): Delivery reliability represents the sup-
plier’s ability to reliably delivery emergency supplies during critical 
times, with high reliability ensuring timely and precise distribution 
(Afrasiabi et al., 2022; Pamucar et al., 2020).

• Geographic coverage (C3): Geographic coverage depicts the extent 
to which the supplier can deliver emergency supplies to affected ar-
eas, with broad coverage enabling rapid support in disaster-stricken 
regions (Li et al., 2022a; Pamucar et al., 2022).

• Sustainability (C4): Sustainability denotes the supplier’s ability to 
maintain reliable service during crises while integrating sustainable 
practices across economic, social, and environmental dimensions 
(Kannan, Mina, Nosrati-Abarghooee, & Khosrojerdi, 2020).

• Collaborative experience and credibility (C5): Collaborative ex-
perience and credibility reveal the supplier’s proven track record and 
reliability in previous emergency collaborations, with strong experi-
ence enabling better coordination and integration with various stake-
holders during disaster responses (Li et al., 2022a; Pamucar et al., 
2022).

These attributes ensure rapid, reliable, and sustainable disaster re-
sponse while fostering strong inter-organizational coordination, which 
aligns with IESS objectives.

3.2.  Emergency supply capacity

Emergency supplies capacity primarily focuses on the essential char-
acteristics of supplies that emergency suppliers can provide (Zhang 
et al., 2022). This capacity can be broadly categorized into availability 
(C6), quality (C7), and cost-effectiveness (C8) (Li et al., 2022a; Pamucar 
et al., 2022).

• Supply availability (C6): Supply availability ensures the prompt 
provision and acquisition of essential supplies during disasters or 
emergencies, enabling rapid support to affected areas (Ge et al., 
2020).

• Supply quality (C7): Supply quality refers to the durability and 
performance of supplies under challenging conditions, with high-
quality supplies ensuring reliability and stability, while low-quality 
ones may deteriorate, hindering rescue efforts and increasing risks 
(Afrasiabi et al., 2022).

• Supply cost-effectiveness (C8): Supply cost-effectiveness involves 
procurement and usage costs, with low cost-effectiveness potentially 
limiting supply acquisition and rescue operations, while identifying 
cost-effective supplies and strategies helps overcome financial con-
straints during emergencies (Liu et al., 2022).

Table 2 
Notations of OPA-P.
Type  Notation Definition

Set
 Set of alternatives 𝑖 ∈  ∶= 1,… , 𝐼 .
 Set of attributes 𝑗 ∈  ∶= 1,… , 𝐽 .
 Set of experts 𝑘 ∈  ∶= 1,… , 𝐾.

Parameter
𝑟𝑒𝑘 Rank of expert 𝑘 ∈  and 𝑟𝑒𝑘 ∈ [𝐾].
𝑟𝑐𝑗𝑘 Rank of attribute 𝑗 ∈   given by expert 𝑘 ∈

 and 𝑟𝑐𝑗𝑘 ∈ [𝐽 ].
𝑟𝑎𝑖𝑗𝑘 Rank of alternative 𝑖 ∈  under attribute 

𝑗 ∈   given by expert 𝑘 ∈  and 𝑟𝑎𝑖𝑗𝑘 ∈
[𝐼].

Variable
𝑍 Objective function of OPA-P.
𝑤𝑖𝑗𝑘 Decision weight of alternative 𝑖 ∈  under 

attribute 𝑗 ∈   given by expert 𝑘 ∈ .

Partial-order theory symbol

(,⪯𝑃𝑂𝐶𝑇 ) Partial-order cumulative transformation 
set (POCTS).

+𝑃𝑂𝐶𝑇
𝑖1

Upper set of alternative 𝑖1 ∈  of POCTS.
−𝑃𝑂𝐶𝑇
𝑖1

Lower set of alternative 𝑖1 ∈  of POCTS.
≠𝑃𝑂𝐶𝑇
𝑖1

Incomparable set of alternative 𝑖1 ∈  of 
POCTS.

𝐏𝑃𝑂𝐶𝑇 POCTS in binary matrix form.
𝐒𝑃𝑂𝐶𝑇 General skeleton matrix of POCTS.

These supply-related attributes ensure that the IESS can effectively 
mobilize resources, balancing quality, cost, and availability to maximize 
impact in disaster scenarios, which aligns with IESS objectives.

4.  Partial ordinal priority approach

OPA-P extends OPA with a partial-order structure based on partial-
order theory and graph theory. It consists of two main components: the 
first is weight elicitation through a linear programming problem based 
on ordinal preference information; the second is identification of Pareto-
optimal alternatives through partial-order cumulative transformation 
and the generation of an adversarial Hasse diagram. Table 2 outlines 
the notations used in OPA-P.

4.1.  Preliminaries

Definition 1  (Partial-order relation). Let  be a binary relation on a 
set  , denoted as  ⊆  ×  (i.e.,  is a subset of the Cartesian product 
of ). The relation  is defined as a partial-order relation on the set  , 
denoted as ⪯, if it satisfies:

• Reflexive relation: 𝑥 ⪯ 𝑥 for all 𝑥 ∈  .
• Anti-symmetric relation: (𝑥 ⪯ 𝑦) ∧ (𝑦 ⪯ 𝑥) implies 𝑥 = 𝑦 for all 

𝑥, 𝑦 ∈  .
• Transitive relation: (𝑥 ⪯ 𝑦) ∧ (𝑦 ⪯ 𝑧) implies 𝑥 ⪯ 𝑧 for all 𝑥, 𝑦, 𝑧 ∈  .

Definition 2  (Total-order relation). A partial-order relation  on a set 
 is defined as total-order relation if it satisfies the strong completeness 
(i.e., (𝑥 ⪯ 𝑦) ∨ (𝑦 ⪯ 𝑥) for all 𝑥, 𝑦 ∈ ). 

The partial-order relation is more “flexible” than the total-order re-
lation, allowing for cases where alternatives are either equivalent or 
incomparable. This study examines the partial-order and total-order re-
lations on the alternative set  based on their performance with respect 
to the attribute set   under expert evaluations from the set , denoted 
as the partial-order set (,⪯ |) and total-order set (,≤ |), respec-
tively.

Definition 3  (Lower and upper set of partial-order set). For all 𝑥 ∈  , 
the lower and upper sets of 𝑥 on the partial-order set ( ,⪯) are defined 
as −

𝑥 ∶= {𝑦 ∈  ∶ 𝑦 ⪯ 𝑥} and +
𝑥 ∶= {𝑦 ∈  ∶ 𝑥 ⪯ 𝑦}. 

Lemma 1. Given a partial-order set ( ,⪯), the following statement holds:

(1) 𝑥 ∈ −
𝑦 ⇔ 𝑦 ∈ +

𝑥 ;
(2) 𝑥 ⪯ 𝑦 ⇔ −

𝑥 ⊆ −
𝑦  for all 𝑥, 𝑦 ∈  .

Definition 4  (Order-preserving mapping of partial-order set). A map-
ping 𝑓 ∶  ↦  is defined as order-preserving mapping from ( ,⪯1) to 
( ,⪯2) if 𝑥 ⪯1 𝑦 ⇒ 𝑓 (𝑥) ⪯2 𝑓 (𝑦) for all 𝑥, 𝑦 ∈  . 

Definition 5  (Inclusion relation in partial-order set). Let −
𝑥,1 and −

𝑥,2
be the lower set of 𝑥 on the partial-order set ( ,⪯1) and ( ,⪯2), re-
spectively. If −

𝑥,1 ⊆ −
𝑥,2 holds for all 𝑥 ∈  , then ( ,⪯1) is a subset of 

( ,⪯2), denoted as ( ,⪯1) ⊆ ( ,⪯2). 

Theorem 1. Given ( ,⪯1) ⊆ ( ,⪯2) and  =  , if 𝑥 ⪯1 𝑦 for all 𝑥, 𝑦 ∈  , 
then 𝑥 ⪯2 𝑦. 

Theorem 1 implies that when two partial-order sets, sharing the same 
alternatives yet differing in attributes, exhibit an inclusive relation, the 
evaluation outcomes are order-preserving in the context of MADM. In 
addition, combining Lemma 1, it can be inferred that if two alternatives 
are comparable, no matter how the weights of experts and attributes 
change, the partial-order relation between the two alternatives remains 
unchanged. The above insight will serve as the basis for constructing 
the partial-order set based on partial-order cumulative transformation 
in OPA-P that incorporates the information of attribute weight.
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4.2.  Weight optimization based on ordinal preference information

This section derives a decision weight optimization model based on 
ordinal preference information, eliminating the need of data standard-
ization and expert opinion aggregation. By convention, the most im-
portant object is ranked 1, followed by others in descending order. In 
OPA-P, the decision-maker first assigns the ranking 𝑟𝑒𝑘 ∈ [𝐾] to each 
expert 𝑘 ∈ . Subsequently, each expert 𝑘 ∈  independently provides 
the ranking 𝑟𝑐𝑗𝑘 ∈ [𝐽 ] to attribute 𝑗 ∈   and the ranking 𝑟𝑎𝑖𝑗𝑘 ∈ [𝐼] to 
alternative 𝑖 ∈  under attribtue 𝑗 ∈  . For clarity, define the following 
three sets:
1 ∶= {(ℎ, 𝑖, 𝑗, 𝑘) ∈  ×  ×  × ∶ 𝑟𝑎ℎ𝑗𝑘 = 𝑟𝑖𝑗𝑘 + 1, 𝑟𝑖𝑗𝑘 ∈ [𝐼 − 1]},

 ∶= {(𝑖, 𝑗, 𝑘) ∈  ×  ×},

2 ∶= {(𝑖, 𝑗, 𝑘) ∈  ×  × ∶ 𝑟𝑖𝑗𝑘 = 𝐼},

where  represents the index set of all experts, attributes, and alter-
natives, 1 represents the set of alternatives with consecutive rankings 
across all experts and attributes, and 2 denotes the set of alternatives 
ranked last by all experts and attributes. Let 𝐴𝑟𝑎𝑖𝑗𝑘

𝑖𝑗𝑘  denote alternative 
𝑖 ranked 𝑟𝑎𝑖𝑗𝑘 under attribute 𝑗 by expert 𝑘, with weight 𝑤𝑖𝑗𝑘. Under 
attribute 𝑗, if expert 𝑘 prefers alternative 𝑖 over alternative ℎ, then the 
weight of alternative 𝑖 is greater than that of alternative ℎ, i.e.,
𝐴
𝑟𝑎ℎ𝑗𝑘
ℎ𝑗𝑘 ≺ | 𝐴

𝑟𝑎𝑖𝑗𝑘
𝑖𝑗𝑘 ⇔ 𝑤ℎ𝑗𝑘 < 𝑤𝑖𝑗𝑘 ⇔ 0 < 𝑤𝑖𝑗𝑘 −𝑤ℎ𝑗𝑘, ∀(ℎ, 𝑖, 𝑗, 𝑘) ∈ 1,

0 ≺ | 𝐴
𝑟𝑎𝑖𝑗𝑘
𝑖𝑗𝑘 ⇔ 0 < 𝑤𝑖𝑗𝑘, ∀(𝑖, 𝑗, 𝑘) ∈ 2,

or equivalently, for any (𝑗, 𝑘) ∈  ×,

𝐼 terms

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑤
𝑟𝑎𝑖𝑗𝑘=1
𝑖𝑗𝑘 −𝑤

𝑟𝑎ℎ𝑗𝑘=2
ℎ𝑗𝑘 > 0,

𝑤
𝑟𝑎𝑖𝑗𝑘=2
𝑖𝑗𝑘 −𝑤

𝑟𝑎ℎ𝑗𝑘=3
ℎ𝑗𝑘 > 0,

⋮

𝑤
𝑟𝑎𝑖𝑗𝑘=𝑟
𝑖𝑗𝑘 −𝑤

𝑟𝑎ℎ𝑗𝑘=𝑟+1
ℎ𝑗𝑘 > 0,

⋮

𝑤
𝑟𝑎𝑖𝑗𝑘=𝐼−1
𝑖𝑗𝑘 −𝑤

𝑟𝑎ℎ𝑗𝑘=𝐼
ℎ𝑗𝑘 > 0,

𝑤
𝑟𝑎𝑖𝑗𝑘=𝐼
𝑖𝑗𝑘 > 0.

To evaluate the impact of ordinal preference information on the 
weight of the alternatives, OPA-P incorporates 𝑟𝑒𝑘, 𝑟𝑐𝑗𝑘, and 𝑟𝑎𝑖𝑗𝑘 in eval-
uating weight disparities between alternatives with consecutive rank-
ings. Both sides of the inequality are multiplied by the ranking param-
eters: 
𝑟𝑒𝑘𝑟𝑐𝑗𝑘𝑟𝑎𝑖𝑗𝑘(𝑤𝑖𝑗𝑘 −𝑤ℎ𝑗𝑘) > 0, ∀(ℎ, 𝑖, 𝑗, 𝑘) ∈ 1,

𝑟𝑒𝑘𝑟𝑐𝑗𝑘𝑟𝑎𝑖𝑗𝑘(𝑤𝑖𝑗𝑘) > 0, ∀(𝑖, 𝑗, 𝑘) ∈ 2.
(1)

Intuitively, this manipulation to the intuition that as rankings increase, 
the marginal effect of weight disparity between consecutive alternatives 
diminishes, which is proved by Wang (2024a) via deriving an equiva-
lent formulation and analyzing the decomposability of the results. The 
above discussion present a logic for analyzing the weight disparities 
of alternatives with consecutive rankings assigned by experts, which 
can also be extended to the analysis of experts and attributes. Notably, 
decision-makers seek weight computations that align with the prefer-
ences of experts and maximize discrimination, a common robust ap-
proach in MADM literature (Grabisch, Kojadinovic, & Meyer, 2008; Li 
et al., 2023; Lu, Wu, Deng, & Li, 2023). Therefore, OPA-P formulates 
a multi-objective optimization model for decision weight optimization 
within a normalized weight space based on ordinal preference informa-
tion, as shown in Eq. (2).

max
𝒘

{

𝑟𝑒𝑘𝑟𝑐𝑗𝑘𝑟𝑎𝑖𝑗𝑘(𝑤𝑖𝑗𝑘 −𝑤ℎ𝑗𝑘)
𝑟𝑒𝑘𝑟𝑐𝑗𝑘𝑟𝑎𝑖𝑗𝑘(𝑤𝑖𝑗𝑘)

∀(ℎ, 𝑖, 𝑗, 𝑘) ∈ 1

∀(𝑖, 𝑗, 𝑘) ∈ 2

s.t.
𝐼
∑

𝑖=1

𝐽
∑

𝑗=1

𝐾
∑

𝑘=1
𝑤𝑖𝑗𝑘 = 1

𝑤𝑖𝑗𝑘 ≥ 0, ∀(𝑖, 𝑗, 𝑘) ∈ 

(2)

Then, the maxmin method is utilized to solve the above multi-
objective optimization problem: 

max
𝒘

min
(𝑖,𝑗,𝑘)∈

{

𝑟𝑒𝑘𝑟𝑐𝑗𝑘𝑟𝑎𝑖𝑗𝑘(𝑤𝑖𝑗𝑘 −𝑤ℎ𝑗𝑘),
𝑟𝑒𝑘𝑟𝑐𝑗𝑘𝑟𝑎𝑖𝑗𝑘(𝑤𝑖𝑗𝑘),

∀(ℎ, 𝑖, 𝑗, 𝑘) ∈ 1,
∀(𝑖, 𝑗, 𝑘) ∈ 2,

s.t.
𝐼
∑

𝑖=1

𝐽
∑

𝑗=1

𝐾
∑

𝑘=1
𝑤𝑖𝑗𝑘 = 1,

𝑤𝑖𝑗𝑘 ≥ 0, ∀(𝑖, 𝑗, 𝑘) ∈ .

(3)

Let 

𝑧 = min
(𝑖,𝑗,𝑘)∈

{

𝑟𝑒𝑘𝑟𝑐𝑗𝑘𝑟𝑎𝑖𝑗𝑘(𝑤𝑖𝑗𝑘 −𝑤ℎ𝑗𝑘),
𝑟𝑒𝑘𝑟𝑐𝑗𝑘𝑟𝑎𝑖𝑗𝑘(𝑤𝑖𝑗𝑘),

∀(ℎ, 𝑖, 𝑗, 𝑘) ∈ 1,
∀(𝑖, 𝑗, 𝑘) ∈ 2.

(4)

Substituting Eq. (4) into Eq. (3), the above maxmin problem can be 
can be further transformed into a linear programming problem, which 
gives the decision weight optimization model of OPA-P based on ordinal 
preference in Eq. (5). 
max
𝒘,𝑧

𝑧

s.t. 𝑧 ≤ 𝑟𝑒𝑘𝑟𝑐𝑗𝑘𝑟𝑎𝑖𝑗𝑘(𝑤𝑖𝑗𝑘 −𝑤ℎ𝑗𝑘) ∀(ℎ, 𝑖, 𝑗, 𝑘) ∈ 1

𝑧 ≤ 𝑟𝑒𝑘𝑟𝑐𝑗𝑘𝑟𝑎𝑖𝑗𝑘(𝑤𝑖𝑗𝑘) ∀(𝑖, 𝑗, 𝑘) ∈ 2

𝐼
∑

𝑖=1

𝐽
∑

𝑗=1

𝐾
∑

𝑘=1
𝑤𝑖𝑗𝑘 = 1

𝑤𝑖𝑗𝑘 ≥ 0 ∀(𝑖, 𝑗, 𝑘) ∈ 

(5)

After obtaining the optimal solution 𝑧∗ and 𝑤∗
𝑖𝑗𝑘 for all (𝑖, 𝑗, 𝑘) ∈ , 

the weights of experts, attributes, and alternatives can be calculated by:

𝑤
𝑖 =

𝐽
∑

𝑗=1

𝐾
∑

𝑘=1
𝑤∗

𝑖𝑗𝑘, ∀𝑖 ∈ ,

𝑤
𝑗 =

𝐼
∑

𝑖=1

𝐾
∑

𝑘=1
𝑤∗

𝑖𝑗𝑘, ∀𝑗 ∈  ,

𝑤
𝑘 =

𝐼
∑

𝑖=1

𝐽
∑

𝑗=1
𝑤∗

𝑖𝑗𝑘, ∀𝑘 ∈ .

(6)

However, the above computed alternative weights project numer-
ous attributes onto a single comprehensive attributes (He et al., 2021; Lu 
et al., 2023; Yue, Lu, & Shi, 2022). Consequently, the outcomes lack sta-
bility in addressing situations involving Pareto-optimal solutions within 
the alternatives, which is a common challenge with the most MADM 
methods (Cao, Hu, & Yue, 2023; He et al., 2021; Li et al., 2023). To ad-
dress this limitation, in this study, the outcomes of weight optimization 
based on ordinal preference information will undergo a partial-order 
cumulative transformation in OPA-P, which incorporates information 
of attribute weight.

4.3.  Partial-order cumulative transformation

The partial-order cumulative transformation of alternative weights 
in OPA-P primarily aims to construct a partial-order set incorporating 
the information of attribute weight. The core of partial-order cumulative 
transformation lies in ensuring the newly constructed partial-order set 
has the property of order-preserving.

The first step is to compute alternative weights under the attributes:

𝑤
𝑖𝑗 =

𝐾
∑

𝑘=1
𝑤∗

𝑖𝑗𝑘, ∀(𝑖, 𝑗) ∈  ×  . (7)

Denote (,⪯𝐴𝐶 ) as the partial-order set derived from the strict 
Pareto-optimality condition based on 𝐖  and (,≤𝑆𝑃𝐶𝐴) as the total-
order set derived from 𝒘 (i.e., single projected comprehensive at-
tribtue). The partial-order relation of the strict Pareto-optimality condi-
tion emphasizes the strict dominance relation between alternatives on 
each attribute, while the total-order relation (𝐴,≤𝑆𝑃𝐶𝐶 ) is of a stronger 
property in which each pair of alternatives is comparable. In this study, 
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the derived partial-order set is theoretically shown to be more flexible 
than the partial-order set derived from the strict Pareto-optimality con-
dition over each attribute, and more robust than the total-order set based 
on the single projected comprehensive attribute computed by decision 
weight optimization model.

Definition 6  (Partial-order cumulative transformation set). A partial-
order set is defined as the partial-order cumulative transformation set 
(POCTS) corresponding to (,⪯𝐴𝐶 ), denoted as (,⪯𝑃𝑂𝐶𝑇 ), if it is de-
rived from the partial-order cumulative transformation weight given by:

𝑤𝑃𝑂𝐶𝑇
𝑖(𝑗) =

𝑜
∑

𝑗=1
𝑤

𝑖(𝑗) , ∀(𝑖, (𝑗)) ∈  ×  , 𝑜 = 1,… , 𝐽 , (8)

where the attributes in 𝐖  are arranged in descending order indexed 
by (𝑗) ∈  . 

The partial-order cumulative transformation weight can be ex-
pressed in matrix form: 

𝐖𝑃𝑂𝐶𝑇 =𝐖𝐇

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑤
1(1) 𝑤

1(1) +𝑤
1(2) ⋯ 𝑤

1(1) +𝑤
1(2) +⋯ +𝑤

1(𝐽 )
𝑤

2(1) 𝑤
2(1) +𝑤

2(2) ⋯ 𝑤
2(1) +𝑤

2(2) +⋯ +𝑤
2(𝐽 )

⋮ ⋮ ⋱ ⋮
𝑤

𝐼(1) 𝑤
𝐼(1) +𝑤

𝐼(2) ⋯ 𝑤
𝐼(1) +𝑤

𝐼(2) +⋯ +𝑤
𝐼(𝐽 )

⎤

⎥

⎥

⎥

⎥

⎦

,

(9)

where 𝐇 is the upper triangular matrix, which implies a linear map-
ping, incorporating weight information, of cumulative transformations 
applied to 𝐖 .

Comparing the row vectors of 𝐖𝑃𝑂𝐶𝑇  yields the POCTS in binary ma-
trix form among the alternatives 𝐏𝑃𝑂𝐶𝑇 ∈ ℝ𝐼×𝐼  with its elements given 
by, for all 𝑖1, 𝑖2 ∈ , 

𝑝𝑃𝑂𝐶𝑇
𝑖1𝑖2

=

{

1, if 𝑤𝑃𝑂𝐶𝑇
𝑖1𝑗

≥ 𝑤𝑃𝑂𝐶𝑇
𝑖2𝑗

,∀𝑗 ∈  ,

0, otherwise.
(10)

By Definition 3, for any 𝑖1 ∈ , the lower and upper set of POCTS in 
binary matrix form can be determined by: 

−𝑃𝑂𝐶𝑇
𝑖1

∶=
{

𝑖2 ∈  ∶ 𝑝𝑃𝑂𝐶𝑇
𝑖1𝑖2

= 1
}

,

+𝑃𝑂𝐶𝑇
𝑖1

∶=
{

𝑖2 ∈  ∶ 𝑝𝑃𝑂𝐶𝑇
𝑖2𝑖1

= 1
}

.
(11)

The following Theorems 2 and 3 give the order-preserving property 
of the proposed POCTS incorporating information of attribute weights.

Theorem 2. Let (,⪯𝑃𝑂𝐶𝑇 ) be the POCTS of (,⪯𝐴𝐶 ) derived from 𝐖 . 
Then (,⪯𝐴𝐶 ) ⊆ (,⪯𝑃𝑂𝐶𝑇 ). 

Theorem 3. Let (,⪯𝑃𝑂𝐶𝑇 ) be the POCTS of (,⪯𝐴𝐶 ) derived from 𝐖 . 
For all 𝑖1, 𝑖2 ∈ , if 𝑖1 ⪯𝐴𝐶 𝑖2, then 𝑤𝑃𝑂𝐶𝑇

𝑖1𝑗
≤ 𝑤𝑃𝑂𝐶𝑇

𝑖2𝑗
. 

Notably, the last column in 𝐖𝑃𝑂𝐶𝑇  equals to 𝒘 computed by deci-
sion weight optimization model in Eq. (6). According to Definition 2, 
(,⪯𝑃𝑂𝐶𝑇 ) ⊆ (,≤𝑆𝑃𝐶𝐶 ). Therefore, (,⪯𝐴𝐶 ) ⊆ (,⪯𝑃𝑂𝐶𝑇 ) ⊆ (,≤𝑆𝑃𝐶𝐶
), which gives the relationship among the proposed POCTS, the partial-
order set based on the strict Pareto-optimality condition across all at-
tributes, and the total-order set based on the single projected com-
prehensive attribute. This indicates that the partial-order set derived 
from partial-order cumulative transformation balances the total-order 
set based on comprehensive evaluation weights and the partial-order 
set based on strict Pareto-optimality, thus creating a more robust partial-
order relation. From a MADM perspective, the POCTS suggests that al-
ternatives facing a disadvantage in a significant attribute may still be 
considered viable, provided that subsequent attributes can offset the 
shortcoming in that specific attribute. This ensures a more stable and 
reliable outcome for decision-makers when selecting the optimal alter-
native.

However, it is evident that redundant information exists in the gener-
ated POCTS binary matrix, which can be streamlined by leveraging the 
transmissibility property of the partial-order relation. This refined dom-
inance structure will offer visual support to decision-maker in selecting 
the optimal alternative.

4.4.  Adversarial hasse diagram generation

In order to streamline the reduction information in partial-order re-
lation, this section proposes the adversarial Hasse diagram of OPA-P, 
drawing inspiration from the Hasse diagram (Yue et al., 2022) and 
the adversarial interpretative structural modeling (Su, Woo, Chen, & 
Park, 2023; Wang, Cui, & Gao, 2024). Compared to the conventional 
Hasse diagram, the adversarial Hasse diagram not only identifies the 
most simplified dominance relations but also extracts hierarchical dom-
inance structures of alternatives based on the non-dominant ascend-
ing (NDA) and descending (NDD) rules. These dual-direction extraction 
rules empower decision-maker with a more comprehensive perspective 
for decision-making and the dominance structure of alternatives in ad-
versarial Hasse diagram offers intuitive insights into Pareto-optimal al-
ternatives, and clustering hierarchy information of alternatives.

Let 𝑙 represent the set of alternatives at layer 𝑙 ∈  ∶= {1,… , 𝐿}
in the adversarial Hasse diagram. Let 𝐏𝑃𝑂𝐶𝑇

−′  represent the matrix ob-
tained by removing row and column 𝑖′ ∈ ′ from 𝐏𝑃𝑂𝐶𝑇 . The following 
Algorithm 1 outlines the procedure to generate the adversarial Hasse 
diagram of OPA-P based on the lower and upper set of POCTS.

Algorithm 1 Adversarial Hasse diagram generation.
1: Input: alternative set , POCTS in binary matrix form 𝐏𝑃𝑂𝐶𝑇 , and 
unit matrix 𝐈. 

2: Output: Alternative set 𝐴
𝑙  or 𝐷

𝑙  for each layer 𝑙 ∈  and general 
skeleton matrix 𝐒𝑃𝑂𝐶𝑇 . 

3: Initialization: ̄ =  and 𝑙 = 1. 
4: Set 𝐒𝑃𝑂𝐶𝑇 = (𝐏𝑃𝑂𝐶𝑇 + 𝐈)⊤ − ((𝐏𝑃𝑂𝐶𝑇 )⊤)2 − 𝐈. 
5: while ̄ ≠ ∅ do
6: Set 𝑙 ∶= ∅. 
7: for ∀𝑖1 ∈ ̄ do
8: Determine −𝑃𝑂𝐶𝑇

𝑖1
 and +𝑃𝑂𝐶𝑇

𝑖1
 according to Eq. (11). 

9: if using non-dominant ascending rule then
10: Set 𝑙 = 𝑙 ∪ arg{(−𝑃𝑂𝐶𝑇

𝑖1
∪ {𝑖1}) ∩ (+𝑃𝑂𝐶𝑇

𝑖1
∪ {𝑖1}) =

(−𝑃𝑂𝐶𝑇
𝑖1

∪ {𝑖1})}.
11: else if using non-dominant descending rule then
12: Set 𝑙 = 𝑙 ∪ arg{(−𝑃𝑂𝐶𝑇

𝑖1
∪ {𝑖1}) ∩ (+𝑃𝑂𝐶𝑇

𝑖1
∪ {𝑖1}) =

(+𝑃𝑂𝐶𝑇
𝑖1

∪ {𝑖1})}.
13: end if
14: end for
15: Set ̄ = ̄∖𝑙 and 𝐏𝑃𝑂𝐶𝑇 = 𝐏𝑃𝑂𝐶𝑇

−𝑙
. 

16: 𝑙 = 𝑙 + 1.
17: end while
18: Set 𝐿 = 𝑙. 
19: return 𝐒𝑃𝑂𝐶𝑇  and 𝑙 for 𝑙 = 1,… , 𝐿.

Line 4 calculates the general skeleton matrix with the time complex-
ity of (𝐼3), while Lines 5–17 perform the hierarchical classification of 
alternatives with the time complexity of (𝐼2𝐿). Thus, the time com-
plexity of Algorithm 1 is (𝐼3) = max{(𝐼2𝐿),(𝐼3)}, which is from the 
fact that 𝐿 ≤ 𝐼 , where the equality gives a total-order relation. The al-
ternative sets derived from NDA are arranged from top to bottom based 
on index 𝑙, while those derived from the NDD are arranged from bot-
tom to top. Connecting the alternatives within the extracted dominant 
hierarchies, based on NDA and NDD rules, and the general skeleton 
matrix, generates the adversarial Hasse diagram of OPA-P. In this dia-
gram, top-layer alternatives identified through NDA and NDD represent
Pareto-optimal solutions. The number of dominant hierarchies, deter-
mined by these rules, is the same, with at least one consistent alternative 
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per layer. The dominance relation within the general skeleton matrix 
is transitive, and alternatives within the same layer are incomparable. 
These properties of the adversarial Hasse diagram assist decision-makers 
in analyzing OPA-P results.

4.5.  Implementation steps

This section outlines the implementation steps, notes, and algorith-
mic complexity analysis of OPA-P. The following Procedure 1 presents 
the implementation steps of OPA-P. When implementing OPA-P, it is im-
portant to note that OPA-P allows for the occurrence of tied rankings, 
where the weight difference between tied alternatives is zero. In indi-
vidual decision-making, the decision-weight elicitation model in Eq. (5) 
can be formulated without the parameters and constraints related to 
multiple experts.

Procedure 1 Implementation steps of OPA-P.
1: Step 1: Identify the elements of decision-making. 
2: Determine the expert set  and attribute set  involved in the 
decision-making process. 

3: Identify the attribute set   according to the decision objectives. 
4: Step 2: Obtain the input data. 
5: Assign important ranking 𝑟𝑒𝑘 for each expert 𝑘 ∈ . 
6: for all expert 𝑘 ∈  do
7: Assign important ranking 𝑟𝑐𝑗𝑘 for each attribute 𝑗 ∈  . 
8: Assign important ranking 𝑟𝑎𝑖𝑗𝑘 for each alternative 𝑖 ∈  under 

each attribute 𝑗 ∈  .
9: end for
10: Step 3: Determine the decision weights. 
11: Solve Eq. (5) for decision weight 𝑤∗

𝑖𝑗𝑘 for all alternative 𝑖 ∈  across 
attribute 𝑗 ∈   under the evaluation of expert 𝑘 ∈ . 

12: Calculate the expert weights 𝒘, attribute weights 𝒘 , and alterna-
tive weights 𝒘 by Eq. (6). 

13: Step 4: Determine the partial-order cumulative transformation 
set. 

14: Calculate the weight 𝑤
𝑖𝑗  for all alternative 𝑖 ∈  across attributes 

𝑗 ∈   according to Eq. (7). 
15: Calculate the matrix of partial-order cumulative transformation 

weight 𝐖𝑃𝑂𝐶𝑇  according to Eq. (9). 
16: Determine the partial-order cumulative transformation set in binary 

matrix form 𝐏𝑃𝑂𝐶𝑇  according to Eq. (10). 
17: Step 5: Generate adversarial Hasse diagram. 
18: Generate adversarial Hasse diagram according to Algorithm 1.

Although OPA-P offers benefits in Pareto-optimal analysis, data ac-
cessibility, and the elimination of data standardization and expert opin-
ion aggregation, it is essential to evaluate the complexity of the pro-
posed method to ensure its computational feasibility in decision-making. 
Specifically, the decision-weight elicitation model in Eq. (5) is a stan-
dard linear programming problem with 𝐼𝐽𝐾 + 1 variables, resulting in 
a worst-case time complexity of (2𝐼𝐽𝐾+1), which is exponential. How-
ever, Wang (2024a) demonstrated that this problem has a closed-form 
solution, reducing the time complexity to (𝐼𝐽𝐾). The time complex-
ities for calculating the weights of experts, attributes, and alternatives 
are (𝐼), (𝐽 ), and (𝐾), respectively. Therefore, the time complex-
ity for Step 3 of OPA-P is (𝐼𝐽𝐾). The time complexities for Lines 
16 and 17 are (𝐼𝐽 ) and (𝐼2𝐽 ), respectively, making the time com-
plexity for Step 4 of OPA-P (𝐼2𝐽 ). Considering the worst-case time 
complexity of Algorithm 1 is (𝐼3), the time complexity of OPA-P is 

max{(𝐼𝐽𝐾),(𝐼2𝐽 ),(𝐼3)}, which can be solved in polynomial time. 
Therefore, since MADM generally deals with small-scale discrete sets of 
alternatives, OPA-P is computationally practical. Table 3 compares the 
time complexity of OPA-P with that of other traditional MADM methods, 
considering the same number of experts, attributes, and alternatives, 
and assuming that the expert and attribute weights are predefined and 
the number of alternatives is larger than the number of attributes and 
experts. The corresponding codes of these MADM methods are available 
at https://github.com/Valdecy/pyDecision. However, it is important to 
note that OPA-P is an integrated method that does not require prede-
fined expert and attribute weights.

5.  Case study

5.1.  Case description and data collection

This section uses the IESS of the 7.20 mega-rainstorm disaster in 
Zhengzhou, China, as a case to demonstrate the proposed OPA-P. The 
catastrophic scale of the rainfall, which broke historical records and 
overwhelmed existing flood control and drainage systems, caused se-
vere waterlogging and widespread flooding. This led to an urgent need 
for the mobilization of medical supplies, food, and other essential relief 
materials (Peng & Zhang, 2022). The disaster’s unprecedented inten-
sity exceeded the capacity of pre-identified suppliers, requiring rapid 
adjustments to the provisioning network. In such a crisis, the deploy-
ment of IESS is essential for efficiently coordinating relief efforts amidst 
tight deadlines, information uncertainty, and the involvement of multi-
ple stakeholders. This case study demonstrates how the OPA-P frame-
work can effectively manage complex, multi-stakeholder scenarios dur-
ing large-scale emergencies, where traditional methods often fall short. 
By leveraging the flexibility and adaptability of the OPA-P, this study 
underscores its practical applicability in real-world crisis management, 
offering a significant enhancement over conventional resource manage-
ment approaches.

Fifteen emergency suppliers, designated as A1 to A15, are at the dis-
posal for selection within the stricken region. These suppliers encom-
pass a spectrum of characteristics, including location, responsiveness, 
and supply capacity, each exhibiting distinct variations. Certain enti-
ties prioritize a stable supply chain and swift responsiveness, albeit at a 
cost premium beyond the norm. Conversely, other entities boast advan-
tageous geographical placement and efficient traffic connectivity, ex-
pediting the provision of flood relief in times of crisis. However, these 
advantages might be counterbalanced by uncertainties surrounding the 
quality and durability of the provided rescue materials. These distinct 
characteristics will serve as benchmarks aiding experts in ranking al-
ternatives. Following this, five experts from various departments act as 
representatives for stakeholders in the selection of emergency suppli-
ers. This group includes representatives from the Zhengzhou Emergency 
Management Department, the Zhengzhou Civil Affairs Department, and 
the Zhengzhou Municipal Health Commission. The experts have been 
prioritized based on their authority in emergency response decision-
making, with E5 having the highest rank, followed by E2, E1, E3, and E4 
in descending order (E5 > E2 > E1 > E3 > E4). These experts evaluate 
the essential requirements for specifying emergency suppliers and pro-
vide rankings for both attributes and suppliers, as detailed in Table B.1.

5.2.  Result analysis

Fig. 2 displays the weights of experts and attributes with the results 
presented in Table B.2. Regarding expert weights, E5, possessing the ut-

Table 3 
Time complexity comparison.

 OPA-P  TOPSIS  VIKOR  COPRAS  CRADIS  MABAC  EDAS  MOORA
 Complexity (𝐼3) (𝐼𝐽𝐾) (𝐼2𝐾) (𝐼𝐽𝐾) (𝐼𝐽𝐾) (𝐼2𝐽𝐾) (𝐼𝐽𝐾) (𝐼𝐽𝐾)
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Fig. 2. Optimal weights and rankings of experts and attributes of the case IESS.

most authority, is assigned 0.4380, followed by E2 with 0.2190. Subse-
quently, E1, E3, and E4 trail behind with the weights of 0.1460, 0.1095, 
and 0.0876, respectively. Notably, the results of expert weights reveal a 
distinct trend of diminishing marginal effects. Regarding attributes, the 
most critical factor is the response speed (C1) with a weight of 0.2444. 
Closely followings are collaborative experience and credibility(C5), de-
livery reliability (C2), and geographic coverage (C3), with weights of 
0.2007, 0.1481, and 0.1329, respectively. Conversely, the weighs for 
supply availability (C6), supply quality (C7), supply cost-effectiveness 
(C8), and supplier sustainability (C4) are relatively lower, with weights 
of 0.0931, 0.0694, 0.0602, and 0.0512, respectively.

The partial-order cumulative transformation is then performed, 
with the transformed weights presented in Table B.3. The correspond-
ing adversarial Hasse diagram is generated, as shown in Fig. 3,with
Table 4 summarizing the hierarchical clusters of alternatives. The dia-
gram clearly displays the IESS information regarding the Pareto-optimal 
and suboptimal alternatives, the dominance structure, and the hierarchi-
cal clustering details. Dashed blocks within the diagram represent the 
alternatives with altered hierarchies. Table 4 shows that the dominant 
hierarchy of the case IESS unfolds over 5 layers, elucidating the alterna-
tives with unchanged hierarchy and altered hierarchy inherent within 
each layer. The structure originating from NDD positions A3 at Layer 1, 
succeeded by A5 and A8 at Layer 2, and A2, A10, A11, A1, and A13 at 
Layer 3. Layer 4 encompasses A4, A6, A12, and A14, while Layer 5, the 
bottom layer, contains A9, A15, and A7. Within the diagram based on 
NDD, the Pareto-optimal alternatives for the case IESS emerges as A3. 
A proximate alternative of note lies in Layer 2, represented by A5 and 
A8. Notably, by the transmissibility of the adversarial Haase diagram, 

Table 4 
Hierarchical clustering information of the case IESS.

Alternatives 
with unchanged 
hierarchy

Alternatives 
with altered 
hierarchy (NDA)

Alternatives 
with altered 
hierarchy (NDD)

 Layer 1 A3 - A8
 Layer 2 A5 A8 A7
 Layer 3 A1, A2, A10, 

A11, A13
- -

 Layer 4 A4, A6, A12, 
A14

- -

 Layer 5 A9, A15 A7 -

A5 serves as a sub-optimal alternative for A3. Regarding the structure 
based on NDA, the dominance hierarchy of A8 has transitioned from 
Layer 2 to Layer 1, whereas A7 now occupies Layer 2 rather than Layer 
5. This reconfiguration positions A8 and A3 in Layer 1, each with inher-
ent merits and limitations. Furthermore, A5 and A7 are the sub-optimal 
alternatives for A3 and A8.

Regarding management implications, the attribute weight results of 
the case study reveal that during the improvisational selection of emer-
gency suppliers, critical stakeholders prioritize suppliers’ emergency re-
sponse capabilities over the attributes of the supplies they offer. No-
tably, despite the growing focus on the sustainability of humanitarian 
operations in line with the UN Sustainable Development Goals, stake-
holders consider the sustainability of emergency suppliers a relatively 
minor attribute. In the adversarial Hasse diagram based on NDD, alter-
native A3 emerges as the Pareto-optimal choice for the case IESS, ex-

Fig. 3. Adversarial Hasse diagram of the case IESS.
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celling in supplier response speed (C1) and performing strongly across 
other attributes, including delivery reliability (C2) and supply qual-
ity (C7). Comparing A8 with A3 shows that A8 outperforms in sup-
plier collaborative experience and credibility (C5) and supply cost-
effectiveness (C8), while A7 surpasses A5 in C5, C2, and supplier ge-
ographic coverage (C3). These findings suggest that A7 is suitable for 
large-scale disasters requiring stable resource supply, and A1 is better 
for the scenarios with extreme time constraints. The decision-making 
process highlights the need to assess each emergency supplier’s spe-
cific capability advantages and tailor the selection to different scenarios. 
For policymakers, these findings offer guidance on formulating policies 
that encourage suppliers to enhance their emergency response capa-
bilities and help in selecting the most appropriate suppliers. Overall, 
the case study demonstrates that OPA-P equips experts with the com-
prehensive information on alternative dominance structures, Pareto-
optimal and sub-optimal alternatives, thus enabling more transparent 
and robust decisions in IESS. This underscores the importance of using 
OPA-P for effective emergency supplier selection and improved disaster
response.

5.3.  Sensitivity analysis

This section performs the sensitivity analysis on input data or pa-
rameters, which is a vital numerical analysis technique to evaluate the 
efficacy of MADM methods. The core of OPA-P involves ordinal prefer-
ence given by experts, i.e., the rankings of attributes and alternatives 
under attributes. However, analyzing the sensitivity of attribute and al-
ternative rankings provided by experts involves perturbing their prefer-
ence information, lacking a clear benchmark, which hinders a compre-
hensive analysis. Therefore, this section performs a sensitivity analysis 
on the expert rankings provided by decision-makers to ensure logical 
consistency. Specifically, a complete permutation of rankings from five 
experts is tested through 120 experiments. The weights assigned to ex-
perts, attributes, and alternatives by OPA-P are summarized. Addition-
ally, the frequency with which each alternative appears as a Pareto-
optimal solution is examined in the adversarial Hasse diagram. Fig. 4 
and Table B.4 display box plots and descriptive statistics of the weight
outcomes.

In the descriptive statistical analysis of expert weights, the mean val-
ues for five experts all demonstrate a consistent feature, standing at 0.2. 
The maximum and minimum values of expert weights are 0.4380 and 
0.0876, respectively. This consistency is also evident across all other 
indicators. This outcome aligns with the intuitive observations from im-
plementing a whole permutation experimental design. The occurrence 
frequency of each expert at various ranking positions is equal, resulting 
in the uniformity of descriptive statistical results among experts. Re-
garding the mean values of attribute weights, the most significant is C1, 
with a weight of 0.2821, followed by C3, with a weight of 0.1717. Subse-
quently, C5, C2, and C6 closely follow, with weights of 0.1295, 0.1214, 

and 0.1134, respectively, exhibiting a relatively similar trend. In con-
trast, the weights of C8 and C4 are the lowest, at 0.0541 and 0.0517, 
respectively. The Skewness results of attributes indicate that, except 
for C1 exhibiting left Skewness, the remaining attributes demonstrate
right Skewness. Meanwhile, the Kurtosis results for the attributes reveal 
that all attributes exhibit negative Kurtosis, implying that the attribute 
weights concentrate around the mean, with relatively fewer data points 
in tails. Notably, the coefficients of variation for both C3 and C5 sur-
pass the threshold (0.15), while the coefficients for other attributes re-
main below the threshold. Specifically, the coefficient of variation for 
C5 reaches 0.2956, indicating a pronounced dispersion trend. Further-
more, an examination of Fig. 4 reveals a distinct portion of C5 weights 
reaching 0.2033. This is primarily due to the ranking of C5 provided by 
expert E5, which is 1, contrasting with rankings of 4, 6, 5, and 7 from 
other experts. The divergent nature of these evaluations results in abnor-
mal fluctuations in the weight of C5. Upon analyzing the mean weights 
of alternatives, it is evident that the top four ranked alternatives are A5, 
A8, A3, and A11, with weights of 0.0881, 0.0868, 0.0841, and 0.0806, 
respectively. Notably, the maximum weight among the alternatives is 
associated with A8, reaching 0.1039, while A8 exhibits a relatively high 
degree of dispersion. Additionally, the coefficients of variation for the 
weights of the alternatives do not exceed the threshold (0.15). Further-
more, both the standard deviation and variance are smaller than that of 
the attributes, indicating a more excellent stability of the alternatives 
compared to the attributes. Furthermore, it is observed that A1, A2, A5, 
A7, A8, A10, A11, A12, and A13 all display a negative skewness, indicat-
ing a right-skewed distribution. This implies that the weight distribution 
of alternatives with negative Skewness extends more gradually to the 
right, with the possibility of some relatively large values concentrated 
overall around the mean. In contrast, the remaining alternatives ex-
hibit characteristics of a left-skewed distribution in their negative Skew-
ness. Through statistical analysis of attribute and alternative weights, 
it can be deduced that the weight outcomes of OPA-P are reasonably
stable.

Fig. 5 illustrates the probability of each alternative emerging as the 
Pareto-optimal solutions in NDA and NDD. It is evident that the proba-
bility in NDD is lower than that in NDA, consistent with the derivation 
of OPA-P. A3, A5, A8, A11, and A1 consistently show probabilities ex-
ceeding 10% in NDA, with A3, A5, and A8 frequently appearing as the 
Pareto-optimal solutions in over 40% experiments. These findings sug-
gest that, under specific conditions, these alternatives have the potential 
to become the Pareto-optimal solutions. This contrasts with the weight-
based total-order ranking, which focuses only on the alternative with 
the highest weight. The difference highlights the importance of consid-
ering the potential superiority of alternatives in various contexts, rather 
than relying solely on their relative positions in a weight-based total or-
der. This underscores the reliability and validity of the adversarial Hasse 
diagram based on partial-order cumulative transformation of OPA-P in 
identifying Pareto-optimality.

Fig. 4. Box plots of the computed weight outcomes.
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Fig. 5. Probability of attaining Pareto-optimal solutions in adversarial Hasse diagram.

5.4.  Comparative analysis

This section undertakes a comparative analysis within the IESS 
context of the Zhengzhou mega-rainstorm disaster to validate OPA-P. 
Specifically, the analysis is divided into two parts: the first part com-
pares the weight-based total-order ranking of alternatives in OPA-P with 
that from classical MADM methods; the second part involves perturbing 
expert rankings to examine the stability of the final alternative rankings 
obtained from different methods. This experimental design is utilized 
because the first part provides “reasonable” reference for comparison, 
with Theorems 2 and 3 indicating that the ranking results displayed in 
the adversarial Hasse diagram must include the weight-based total-order 
ranking outcomes.

In the first part, the Spearman correlation coefficient is used to eval-
uate the correlation between the ordinal sequences of alternative rank-
ings:

𝜌 = 1 −
6
∑𝑛

𝑖=1 𝑑
2
𝑖

𝑛(𝑛2 − 1)
,

where 𝑖 and 𝑛 are the index and number of alternatives and 𝑑2𝑖  is the 
difference squared between alternative 𝑖 in two ranking sequences. As 𝜌
approaches 1, it indicates a strong positive correlation; as 𝜌 approaches 
-1, it indicates a strong inverse correlation; and as 𝜌 approaches 0, it 
suggests no significant correlation.

In the second part, perturbed expert rankings are generated from a 
normal distribution with a standard deviation of 1/3 and original ex-
pert rankings as the mean. This standard deviation reflects expert rank-
ing perturbation merely without reversal, as approximately 99.7% of 
data in a normal distribution lies within three standard deviations of 
the mean, enabling the estimation of standard deviations based on the 
expected perturbation interval. The following indicators are used to as-
sess performance:

𝐶𝑅 = ‖

(

argmax
𝑟∈

𝑝𝑛1𝑟,… , argmax
𝑟∈

𝑝𝑛𝐼𝑟

)⊤
−
(

𝑟∗1 ,… , 𝑟∗𝐼
)⊤

‖2,

𝐶𝑃 = ‖

(

max
𝑟∈

𝑝𝑛1𝑟,… ,max
𝑟∈

𝑝𝑛𝐼𝑟

)⊤
‖2,

where 𝑛 denotes the iteration step, 𝑟∗𝑖  denotes the optimal ranking of al-
ternative 𝑖 in the first part, and 𝑝𝑛𝑖𝑟 denotes the probability of alternative 
𝑘 being ranked 𝑟. The first indicator 𝐶𝑅 measures the deviation between 
the final ranking and the initial reference, with smaller values being 
preferable, while the second indicator 𝐶𝑃  evaluates the concentration 
of the optimal ranking probability, with larger values being preferable.

This section selects TOPSIS, COPRAS, CRADIS, MABAC, EDAS, and 
MOORA as the benchmark due to their status as mainstream baseline 
methods in MADM of IESS. It is worth noting that ELECTRE is not se-
lected due to the additional requirement of setting subjective thresh-
old parameters during its implementation. Typically, the above MADM 
methods employ decision matrices with objective values or evaluation 

Fig. 6. Correlation heat map of alternative rankings of multiple MADM meth-
ods.

scores, necessitating the prior acquisition of attribute weights. Thus, 
𝑤

𝑖𝑗  is decomposed into the attribute weights and utilities of alternatives 
on attributes (i.e., 𝑤

𝑖𝑗 = 𝑤
𝑗 × 𝑣𝑖𝑗 ) (Wang, 2024a). Table B.5 shows the 

decision matrix of the selected MADM methods.
Table 5 presents the weight-based alternative ranking (WBR) of OPA-

P alongside rankings from other MADM comparison methods. Fig. 6 
shows the heat map of Spearman correlation coefficients. The results 
indicate a positive correlation between the WBR of OPA-P and the rank-
ings of most benchmark methods, with Spearman coefficients above 
0.832. Despite minor ranking differences across methods, A8 and A3 
are consistently ranked as the top two, in line with the adversarial Hasse 
diagram results based on NDA in OPA-P. The specific causes of these dis-
crepancies are not analyzed, as the benchmark methods rely on different 
assumptions and axioms, making the causes context-dependent. A more 
significant factor is the performance of the methods when the data is 
perturbed, which will be discussed next.

Table 6 presents the ranking results based on the probability of each 
alternative appearing in various rankings after 500 iterations. The CR 
indicator shows that the WBR of OPA-P and COPRAS rankings are sim-
ilar, both converging probabilistically to the original expert rankings. 
The CR value for NDA and NDD in OPA-P is 1, indicating a shift in 
one alternative between adjacent ranks, specifically, A2 moved from 
third to fourth. In contrast, the CR values for other methods exceed 10,
suggesting significant ranking reversals and poorer performance. The CP 
indicator reveals that NDA of OPA-P performs best, indicating a more 
concentrated probability distribution and higher reliability. Compared 
to NDA and WBR of OPA-P, NDD of OPA-P has a CP value of 2.2017, in-
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Table 5 
Alternative ranking results of multiple MADM methods.

 OPA-P (WBR)  TOPSIS  COPRAS  CRADIS  MABAC  EDAS  MOORA
 A1  7  6  7  5  8  7  7
 A2  8  7  8  9  11  9  8
 A3  2  2  2  1  2  2  2
 A4  12  12  12  13  6  11  12
 A5  4  4  4  2  5  3  4
 A6  11  11  11  14  10  12  11
 A7  3  3  3  8  4  4  3
 A8  1  1  1  6  1  1  1
 A9  13  14  13  12  12  13  13
 A10  10  8  10  10  13  10  10
 A11  6  9  6  3  3  6  6
 A12  9  10  9  7  9  8  9
 A13  5  5  5  4  7  5  5
 A14  14  13  14  11  14  14  14
 A15  15  15  15  15  15  15  15

Table 6 
Results for expert ranking perturbation.

 OPA-P
TOPSIS COPRAS CRADIS MABAC EDAS MOORA

 WBR  NDA  NDD
 A1  7  3  3  6  7  5  8  7  7
 A2  8  4  4  2  8  9  11  9  8
 A3  2  1  1  12  2  1  2  2  2
 A4  12  4  4  3  12  2  6  11  11
 A5  4  2  2  11  4  13  7  12  12
 A6  11  4  4  4  11  14  5  3  4
 A7  3  2  5  1  3  8  10  4  3
 A8  1  1  2  13  1  6  4  1  1
 A9  13  5  5  14  13  12  1  13  13
 A10  10  3  3  7  10  10  12  10  10
 A11  6  3  3  8  6  3  13  6  6
 A12  9  4  4  9  9  7  3  8  9
 A13  5  3  3  10  5  4  9  5  5
 A14  14  4  4  5  14  11  14  14  14
 A15  15  5  5  15  15  15  15  15  15
 CR  0.0000  1.0000  1.0000  23.3238  0.0000  15.5563  18.3303  12.7279  10.6771
 CP  2.6676  2.8892  2.2017  2.4195  2.6676  2.7247  2.4731  2.7108  2.6174

dicating poorer performance and suggesting that level extraction based 
on the NDD rule is less effective than that based on the NDA rule in 
this scenario. In summary, the proposed OPA-P method outperforms 
others in both the convergence of final rankings after expert ranking
perturbations and the reliability of occurrence probabilities. Addition-
ally, it is important to note that benchmark methods rely on decision 
matrices as input and require prior determination of attribute weights, 
further emphasizing the advantages of the proposed method in simulta-
neously determining weights for experts, attributes, and alternatives, as 
well as identifying Pareto-optimal solutions.

6.  Concluding remarks

This study introduces OPA-P, a novel approach designed to address 
complex decision-making challenges in IESS, particularly in situations 
involving information uncertainty, multi-stakeholder involvement, and 
Pareto-optimal identification. Specifically, OPA-P establishs a decision 
weight optimization model that simultaneously determines the weights 
of experts, attributes, and alternatives based on more reliable and ac-
cessible ordinal rankings obtained from experts as input data. This is 
achieved without requiring data standardization or expert opinion ag-
gregation, making the process more efficient and accessible. The core 
innovation of OPA-P lies in the integration of a partial-order cumula-
tive transformation technique with a solid theoretical foundation, which
improves the stability of decision-making processes and aids in iden-
tifying potential Pareto-optimal solutions. Additionally, the algorithm 
of generating the adversarial Hasse diagram significantly improves 

the identification of both Pareto-optimal and suboptimal alternatives, 
thereby simplifying alternative dominance structures. The practical im-
plications of OPA-P in disaster management are notable, as it offers a 
structured approach for addressing the complexities and uncertainties 
commonly encountered in disaster response. When applied to real-world 
cases, such as the Zhengzhou mega-rainstorm disaster, OPA-P shows po-
tential for improving decision-making processes and supporting more 
effective response outcomes in emergency scenarios. This approach pro-
vides a useful tool for decision-makers in disaster management by facili-
tating more informed and systematic decisions in the face of uncertainty.

It is important to note that the conclusions and findings of this study 
are based on a limited set of case scenarios, necessitating further ex-
ploration of the practical applications of OPA-P to confirm its effective-
ness. Additionally, the implementation of IESS using OPA-P assumes 
attribute independence, which may not fully reflect the complexities of 
real-world situations. Future research should refine OPA-P by consid-
ering attribute interdependencies, thereby enhancing its applicability 
in dynamic and complex disaster management contexts. Moreover, this 
study does not account for the influence of DMs’ risk preferences on the 
decision-making outcomes. Future studies could incorporate these pref-
erences into the OPA-P model, improving its adaptability in real-world 
decision-making contexts.
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Appendix A.  Technical proof

Proof of Theorem 1
Proof.  Given ( ,⪯1) ⊆ ( ,⪯2), by Definition 5, we have −

𝑥,1 ⊆ −
𝑥,2 and 

−
𝑦,1 ⊆ −

𝑦,2 for all 𝑥, 𝑦 ∈  . By Lemma 1, 𝑥 ⪯1 𝑦 implies that 𝑥 ∈ −
𝑦 . 

Since −
𝑦,1 ⊆ −

𝑦,2, then 𝑥 ∈ −
𝑦,2 such that 𝑥 ⪯2 𝑦.    

Proof of Theorem 2
Proof.  Let −𝐴𝐶

𝑖1
= {𝑖2 ∈  ∶ 𝑖2 ⪯𝐴𝐶 𝑖1} and −𝑃𝑂𝐶𝑇

𝑖1
= {𝑖2 ∈  ∶

𝑖2 ⪯𝑃𝑂𝐶𝑇 𝑖1} denote the lower set of 𝑖1 ∈  on (,⪯𝐴𝐶 ) and (,⪯𝑃𝑂𝐶𝑇 ), 
respectively. For 𝑖2 ∈ −𝐴𝐶

𝑖1
, there exists 𝑖2 ⪯𝐴𝐶 𝑖1, which yields 

𝑤
𝑖2𝑗

≤ 𝑤
𝑖1𝑗

 for all 𝑗 ∈  . It follows that ∑𝑙
𝑗=1 𝑤


𝑖2𝑗

≤
∑𝑙

𝑗=1 𝑤

𝑖1𝑗

 for 
𝑙 = 1,… , 𝐽 such that 𝑖2 ∈ −𝑃𝑂𝐶𝑇

𝑖1
, which implies that −𝐴𝐶

𝑖1
⊆ −𝑃𝑂𝐶𝑇

𝑖1
. 

By Definition 5, we have (,⪯𝐴𝐶 ) ⊆ (,⪯𝑃𝑂𝐶𝑇 ).    
Proof of Theorem 3

Proof.  Prove by mathematical induction. Consider 𝐖 , and its ele-
ments 𝑤

𝑖𝑗  can be decomposed into 𝑤
𝑗 × 𝑣𝑖𝑗 , where 𝑤

𝑗  signifies the at-
tribute weight computed in OPA-P, and 𝑣𝑖𝑗  can be interpreted as an un-
weighted utility of alternative 𝑖 ∈  with respect to the attribtue 𝑗 ∈  . 
Given 𝑖1 ⪯𝐴𝐶 𝑖2, it follows that 𝑤

𝑖1𝑗
≤ 𝑤

𝑖2𝑗
⇔ 𝑣𝑖1𝑗 ≤ 𝑣𝑖2𝑗  such that:

(𝑤
𝑖21

−𝑤
𝑖11

) + (𝑤
𝑖22

−𝑤
𝑖12

) +⋯ + (𝑤
𝑖2𝐽

−𝑤
𝑖1𝐽

) ≥ 0

⇔𝑤
1 (𝑣


𝑖21

− 𝑣𝑖11 ) +𝑤
2 (𝑣


𝑖22

− 𝑣𝑖12 ) +⋯ +𝑤
𝐽 (𝑣


𝑖2𝐽

− 𝑣𝑖1𝐽 ) ≥ 0.
(A.1)

When 𝑟 = 2, there exists 𝑤
1 ≥ 𝑤

2  and 𝑣𝑖21 ≥ 𝑣𝑖11  such that: 

𝑤
1 (𝑣


𝑖21

− 𝑣𝑖11 ) ≥ 𝑤
2 (𝑣


𝑖21

− 𝑣𝑖11 ). (A.2)

It follows that: 
𝑤

1 (𝑣

𝑖21

− 𝑣𝑖11 ) +𝑤
2 (𝑣


𝑖22

− 𝑣𝑖12 )

≥𝑤
2 (𝑣


𝑖21

− 𝑣𝑖11 ) +𝑤
2 (𝑣


𝑖22

− 𝑣𝑖12 )

=𝑤
2 (𝑣


𝑖21

− 𝑣𝑖11 + 𝑣𝑖22 − 𝑣𝑖12 ) ≥ 0.

(A.3)

When 𝑟 = 𝑙, there exists 𝑤
𝑙−1 ≥ 𝑤

𝑙  and 𝑣𝑖2𝑗 ≥ 𝑣𝑖1𝑗  for all 𝑗 ∈ [𝑙] such 
that: 
𝑤

1 (𝑣

𝑖21

− 𝑣𝑖11 ) +⋯ +𝑤
𝑙 (𝑣


𝑖2𝑙

− 𝑣𝑖1𝑙 )

≥𝑤
𝑙 (𝑣


𝑖21

− 𝑣𝑖11 +⋯ + 𝑣𝑖2𝑙 − 𝑣𝑖1𝑙 ) ≥ 0.
(A.4)

Thus, when 𝑟 = 𝐽 , there exists: 
𝑤

1 (𝑣

𝑖21

− 𝑣𝑖11 ) +⋯ +𝑤
𝐽 (𝑣


𝑖2𝐽

− 𝑣𝑖1𝐽 )

≥𝑤
𝐽 (𝑣


𝑖21

− 𝑣𝑖11 +⋯ + 𝑣𝑖2𝐽 − 𝑣𝑖1𝐽 ).
(A.5)

By the given premise 𝑤
1 (𝑣


𝑖21

− 𝑣𝑖11 ) +𝑤
2 (𝑣


𝑖22

− 𝑣𝑖12 ) +⋯ +

𝑤
𝐽 (𝑣


𝑖2𝐽

− 𝑣𝑖1𝐽 ) ≥ 0, it follows that 

𝑤
1 (𝑣


𝑖21

− 𝑣𝑖11 ) +⋯ +𝑤
𝐽 (𝑣


𝑖2𝐽

− 𝑣𝑖1𝐽 )

≥𝑤
𝐽 (𝑣


𝑖21

− 𝑣𝑖11 +⋯ + 𝑣𝑖2𝐽 − 𝑣𝑖1𝐽 ) ≥ 0.
(A.6)

Thus, 𝑤𝑃𝑂𝐶𝑇
𝑖1𝑗

≤ 𝑤𝑃𝑂𝐶𝑇
𝑖2𝑗

 holds.    

Appendix B.  Case data and calculation results
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Table B.1 
Ranking of attributes and alternatives under attributes provided by experts for the case IESS.

 Expert ID  Supplier ID  SC1  SC2  SC3  SC4  SC5  SC6  SC7  SC8
 E1  —  1  5  2  7  4  3  6  8
 E2  —  1  2  4  8  6  3  5  7
 E3  —  1  4  3  8  5  2  6  7
 E4  —  2  5  1  6  7  4  3  8
 E5  —  3  2  4  7  1  8  6  5

E1

 A1  1  14  10  8  3  6  8  15
 A2  9  10  6  10  15  11  11  5
 A3  2  15  5  15  6  15  10  1
 A4  10  7  4  11  9  5  3  9
 A5  3  4  15  1  4  7  7  13
 A6  4  13  3  12  7  8  1  6
 A7  8  3  14  2  5  3  14  8
 A8  7  9  12  3  10  12  4  4
 A9  11  2  11  5  1  2  9  10
 A10  6  12  1  14  11  13  2  3
 A11  12  1  13  4  2  1  12  11
 A12  14  6  2  13  14  14  13  2
 A13  5  11  7  9  8  4  15  12
 A14  13  8  8  6  12  9  5  7
 A15  15  5  9  7  13  10  6  14

E2

 A1  13  1  4  11  3  1  15  10
 A2  4  15  11  3  7  13  10  3
 A3  1  14  10  9  12  14  9  6
 A4  7  6  7  4  6  5  5  11
 A5  2  9  12  5  5  8  11  7
 A6  11  4  6  6  11  2  3  12
 A7  15  2  3  12  10  9  4  15
 A8  3  7  14  2  1  4  12  4
 A9  14  3  2  15  9  6  1  14
 A10  6  13  13  7  14  11  14  2
 A11  12  5  1  14  15  3  2  13
 A12  5  12  15  1  2  12  13  8
 A13  10  8  5  13  8  7  8  5
 A14  8  10  9  8  4  10  6  9
 A15  9  11  8  10  13  15  7  1

E3

 A1  7  9  14  1  7  13  15  6
 A2  15  6  4  11  12  12  2  5
 A3  2  14  15  2  2  3  10  12
 A4  14  2  1  15  4  2  14  14
 A5  1  13  13  7  3  14  9  1
 A6  13  5  3  12  5  1  1  15
 A7  6  10  12  6  11  10  12  4
 A8  3  15  11  3  1  4  11  13
 A9  12  1  2  14  10  9  3  7
 A10  5  11  10  8  13  11  13  3
 A11  10  3  5  4  9  5  4  10
 A12  8  7  8  13  15  15  8  2
 A13  11  4  6  5  6  6  5  8
 A14  4  12  9  9  14  8  7  11
 A15  9  8  7  10  8  7  6  9

E4

 A1  11  6  8  14  15  14  5  4
 A2  6  10  7  13  9  6  4  10
 A3  15  5  12  8  4  7  10  7
 A4  7  9  6  12  14  5  3  11
 A5  10  7  3  5  3  13  2  3
 A6  3  4  13  4  13  1  15  15
 A7  12  1  9  9  2  2  9  14
 A8  9  11  4  15  8  8  6  6
 A9  5  8  11  6  10  12  11  5
 A10  2  14  5  7  6  9  7  8
 A11  13  3  1  10  5  3  1  12
 A12  8  12  10  1  11  10  14  2
 A13  14  2  2  11  1  4  8  13
 A14  1  13  15  2  12  15  13  1
 A15  4  15  14  3  7  11  12  9

E5

 A1  4  14  15  3  10  15  6  4
 A2  14  7  1  14  4  10  11  5
 A3  10  1  2  12  9  2  1  15
 A4  3  12  11  1  15  14  12  6
 A5  13  3  6  10  8  1  5  14
 A6  9  8  10  11  14  4  15  9
 A7  15  2  3  5  2  3  4  10
 A8  2  13  12  2  1  9  10  1
 A9  6  11  7  13  11  13  7  7
 A10  8  9  8  15  5  5  8  13
 A11  1  15  13  4  12  12  13  2
 A12  11  4  4  9  6  6  2  12
 A13  7  5  9  6  3  7  3  11
 A14  12  6  5  7  7  8  14  8
 A15  5  10  14  8  13  11  9  3
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Table B.2 
Optimal weights for the case IESS.

 Expert ID  Supplier ID  C1  C2  C3  C4  C5  C6  C7  C8

E1

 A1  0.0119  0.0001  0.0009  0.0004  0.0016  0.0012  0.0004  0.0000
 A2  0.0021  0.0004  0.0019  0.0003  0.0001  0.0005  0.0002  0.0006
 A3  0.0083  0.0000  0.0022  0.0000  0.0009  0.0001  0.0003  0.0015
 A4  0.0018  0.0006  0.0027  0.0002  0.0005  0.0015  0.0011  0.0003
 A5  0.0065  0.0011  0.0001  0.0017  0.0013  0.0010  0.0005  0.0001
 A6  0.0053  0.0002  0.0033  0.0002  0.0008  0.0009  0.0020  0.0005
 A7  0.0026  0.0013  0.0002  0.0012  0.0011  0.0022  0.0001  0.0003
 A8  0.0031  0.0004  0.0005  0.0009  0.0004  0.0004  0.0009  0.0007
 A9  0.0014  0.0017  0.0007  0.0006  0.0030  0.0028  0.0004  0.0002
 A10  0.0037  0.0002  0.0059  0.0001  0.0003  0.0003  0.0014  0.0008
 A11  0.0011  0.0024  0.0004  0.0008  0.0021  0.0040  0.0002  0.0002
 A12  0.0005  0.0007  0.0042  0.0001  0.0001  0.0002  0.0001  0.0010
 A13  0.0044  0.0003  0.0016  0.0003  0.0006  0.0018  0.0000  0.0001
 A14  0.0008  0.0005  0.0013  0.0005  0.0003  0.0007  0.0007  0.0004
 A15  0.0002  0.0009  0.0011  0.0004  0.0002  0.0006  0.0006  0.0001

E2

 A1  0.0012  0.0089  0.0020  0.0003  0.0016  0.0059  0.0001  0.0004
 A2  0.0080  0.0002  0.0005  0.0012  0.0008  0.0004  0.0005  0.0014
 A3  0.0178  0.0004  0.0007  0.0004  0.0003  0.0002  0.0006  0.0008
 A4  0.0047  0.0028  0.0012  0.0010  0.0009  0.0022  0.0013  0.0003
 A5  0.0125  0.0016  0.0004  0.0008  0.0011  0.0013  0.0004  0.0007
 A6  0.0021  0.0040  0.0014  0.0007  0.0003  0.0042  0.0020  0.0002
 A7  0.0004  0.0062  0.0024  0.0002  0.0004  0.0011  0.0016  0.0001
 A8  0.0098  0.0023  0.0002  0.0016  0.0030  0.0027  0.0003  0.0011
 A9  0.0007  0.0049  0.0031  0.0000  0.0005  0.0019  0.0036  0.0001
 A10  0.0056  0.0006  0.0003  0.0006  0.0001  0.0007  0.0001  0.0018
 A11  0.0016  0.0033  0.0045  0.0001  0.0001  0.0033  0.0025  0.0002
 A12  0.0066  0.0008  0.0001  0.0022  0.0021  0.0005  0.0002  0.0006
 A13  0.0026  0.0019  0.0017  0.0001  0.0006  0.0016  0.0008  0.0009
 A14  0.0039  0.0013  0.0008  0.0005  0.0013  0.0009  0.0011  0.0005
 A15  0.0032  0.0010  0.0010  0.0003  0.0002  0.0001  0.0009  0.0025

E3

 A1  0.0023  0.0004  0.0001  0.0011  0.0005  0.0003  0.0000  0.0004
 A2  0.0002  0.0007  0.0013  0.0001  0.0002  0.0004  0.0010  0.0005
 A3  0.0062  0.0001  0.0001  0.0008  0.0012  0.0024  0.0002  0.0001
 A4  0.0004  0.0016  0.0030  0.0000  0.0008  0.0031  0.0001  0.0001
 A5  0.0089  0.0001  0.0002  0.0003  0.0010  0.0002  0.0003  0.0013
 A6  0.0006  0.0008  0.0016  0.0001  0.0007  0.0045  0.0015  0.0000
 A7  0.0028  0.0003  0.0003  0.0003  0.0002  0.0007  0.0001  0.0006
 A8  0.0049  0.0000  0.0003  0.0006  0.0018  0.0020  0.0002  0.0001
 A9  0.0008  0.0022  0.0021  0.0000  0.0003  0.0008  0.0008  0.0003
 A10  0.0033  0.0003  0.0004  0.0002  0.0001  0.0005  0.0001  0.0007
 A11  0.0013  0.0012  0.0011  0.0005  0.0003  0.0017  0.0007  0.0002
 A12  0.0019  0.0006  0.0006  0.0001  0.0000  0.0001  0.0003  0.0009
 A13  0.0010  0.0010  0.0009  0.0004  0.0006  0.0014  0.0006  0.0003
 A14  0.0040  0.0002  0.0005  0.0002  0.0001  0.0010  0.0004  0.0001
 A15  0.0016  0.0005  0.0008  0.0002  0.0004  0.0012  0.0005  0.0002

E4

 A1  0.0004  0.0004  0.0016  0.0000  0.0000  0.0001  0.0009  0.0004
 A2  0.0011  0.0002  0.0019  0.0001  0.0002  0.0006  0.0011  0.0001
 A3  0.0001  0.0005  0.0006  0.0003  0.0005  0.0005  0.0004  0.0002
 A4  0.0009  0.0003  0.0022  0.0001  0.0000  0.0007  0.0013  0.0001
 A5  0.0005  0.0004  0.0039  0.0004  0.0006  0.0001  0.0017  0.0005
 A6  0.0020  0.0006  0.0005  0.0005  0.0001  0.0018  0.0000  0.0000
 A7  0.0003  0.0014  0.0013  0.0002  0.0007  0.0012  0.0004  0.0000
 A8  0.0006  0.0002  0.0032  0.0000  0.0002  0.0004  0.0007  0.0003
 A9  0.0013  0.0003  0.0008  0.0004  0.0002  0.0002  0.0003  0.0003
 A10  0.0025  0.0001  0.0027  0.0003  0.0003  0.0003  0.0006  0.0002
 A11  0.0002  0.0008  0.0071  0.0002  0.0004  0.0010  0.0024  0.0001
 A12  0.0008  0.0001  0.0011  0.0012  0.0001  0.0003  0.0001  0.0006
 A13  0.0001  0.0010  0.0050  0.0001  0.0010  0.0008  0.0005  0.0001
 A14  0.0036  0.0001  0.0001  0.0008  0.0001  0.0000  0.0002  0.0009
 A15  0.0016  0.0000  0.0003  0.0007  0.0003  0.0002  0.0002  0.0002

E5

 A1  0.0053  0.0007  0.0002  0.0028  0.0053  0.0001  0.0019  0.0032
 A2  0.0005  0.0047  0.0089  0.0002  0.0160  0.0007  0.0007  0.0027
 A3  0.0018  0.0178  0.0062  0.0005  0.0064  0.0031  0.0059  0.0001
 A4  0.0065  0.0016  0.0010  0.0051  0.0007  0.0002  0.0005  0.0022
 A5  0.0008  0.0098  0.0028  0.0008  0.0078  0.0045  0.0022  0.0003
 A6  0.0021  0.0039  0.0013  0.0006  0.0015  0.0020  0.0001  0.0013
 A7  0.0002  0.0125  0.0049  0.0019  0.0249  0.0024  0.0027  0.0011
 A8  0.0083  0.0012  0.0008  0.0036  0.0356  0.0008  0.0009  0.0071
 A9  0.0037  0.0021  0.0023  0.0003  0.0042  0.0003  0.0016  0.0019
 A10  0.0026  0.0032  0.0019  0.0001  0.0133  0.0017  0.0013  0.0005
 A11  0.0119  0.0004  0.0006  0.0023  0.0032  0.0004  0.0004  0.0050
 A12  0.0014  0.0080  0.0040  0.0009  0.0111  0.0014  0.0042  0.0006
 A13  0.0031  0.0066  0.0016  0.0016  0.0195  0.0012  0.0033  0.0008
 A14  0.0011  0.0056  0.0033  0.0013  0.0093  0.0010  0.0002  0.0016
 A15  0.0044  0.0026  0.0004  0.0011  0.0023  0.0005  0.0011  0.0039
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Table B.3 
Partial-order cumulative transformation weights of the case IESS.

𝒘𝑃𝑂𝐶𝑇
𝑗1

𝒘𝑃𝑂𝐶𝑇
𝑗2

𝒘𝑃𝑂𝐶𝑇
𝑗3

𝒘𝑃𝑂𝐶𝑇
𝑗4

𝒘𝑃𝑂𝐶𝑇
𝑗5

𝒘𝑃𝑂𝐶𝑇
𝑗6

𝒘𝑃𝑂𝐶𝑇
𝑗7

𝒘𝑃𝑂𝐶𝑇
𝑗8

 A1  0.0211  0.0301  0.0407  0.0454  0.0531  0.0563  0.0607  0.0653
 A2  0.0119  0.0290  0.0351  0.0496  0.0521  0.0556  0.0608  0.0627
 A3  0.0342  0.0435  0.0624  0.0722  0.0785  0.0860  0.0887  0.0907
 A4  0.0142  0.0173  0.0241  0.0341  0.0418  0.0461  0.0490  0.0555
 A5  0.0292  0.0409  0.0539  0.0613  0.0684  0.0735  0.0763  0.0803
 A6  0.0121  0.0154  0.0249  0.0330  0.0462  0.0518  0.0538  0.0559
 A7  0.0063  0.0337  0.0554  0.0645  0.0721  0.0770  0.0790  0.0829
 A8  0.0267  0.0678  0.0719  0.0770  0.0832  0.0862  0.0954  0.1021
 A9  0.0080  0.0161  0.0272  0.0363  0.0422  0.0487  0.0516  0.0530
 A10  0.0177  0.0318  0.0362  0.0474  0.0509  0.0545  0.0584  0.0597
 A11  0.0161  0.0221  0.0302  0.0438  0.0541  0.0602  0.0658  0.0696
 A12  0.0112  0.0247  0.0350  0.0449  0.0473  0.0523  0.0560  0.0605
 A13  0.0114  0.0338  0.0446  0.0553  0.0620  0.0672  0.0694  0.0720
 A14  0.0133  0.0244  0.0321  0.0382  0.0417  0.0444  0.0478  0.0512
 A15  0.0111  0.0144  0.0195  0.0230  0.0256  0.0289  0.0358  0.0385

Table B.4 
Descriptive statistics of the computed weight outcomes for sensitivity analysis.

 Mean  Max  Min  Standard Deviation  Variance  Skewness  Kurtosis  Coefficient of Variation
 E1  0.2000  0.4380  0.0876  0.1276  0.0163  1.1019 -0.3233  0.6380
 E2  0.2000  0.4380  0.0876  0.1276  0.0163  1.1019 -0.3233  0.6380
 E3  0.2000  0.4380  0.0876  0.1276  0.0163  1.1019 -0.3233  0.6380
 E4  0.2000  0.4380  0.0876  0.1276  0.0163  1.1019 -0.3233  0.6380
 E5  0.2000  0.4380  0.0876  0.1276  0.0163  1.1019 -0.3233  0.6380
 C1  0.2821  0.3263  0.2202  0.0341  0.0012 -0.3725 -1.3224  0.1209
 C2  0.1214  0.1488  0.0980  0.0164  0.0003  0.2634 -1.4249  0.1353
 C3  0.1717  0.2375  0.1307  0.0331  0.0011  0.8466 -0.6099  0.1927
 C4  0.0517  0.0551  0.0490  0.0018  0.0000  0.4307 -0.9298  0.0348
 C5  0.1295  0.2033  0.0895  0.0383  0.0015  1.0689 -0.3561  0.2956
 C6  0.1135  0.1394  0.0877  0.0144  0.0002  0.0569 -0.8765  0.1267
 C7  0.0760  0.0909  0.0680  0.0076  0.0001  1.0011 -0.4367  0.0998
 C8  0.0541  0.0605  0.0501  0.0032  0.0000  0.8783 -0.5356  0.0599
 A1  0.0683  0.0856  0.0559  0.0093  0.0001  0.4050 -1.2665  0.1362
 A2  0.0555  0.0639  0.0485  0.0045  0.0000  0.2496 -1.0751  0.0813
 A3  0.0841  0.0929  0.0686  0.0080  0.0001 -1.0532 -0.3691  0.0952
 A4  0.0623  0.0696  0.0545  0.0042  0.0000 -0.1595 -0.7932  0.0672
 A5  0.0881  0.0967  0.0798  0.0047  0.0000  0.1111 -0.7965  0.0536
 A6  0.0676  0.0779  0.0540  0.0070  0.0000 -0.5076 -0.8752  0.1035
 A7  0.0694  0.0842  0.0598  0.0076  0.0001  0.9465 -0.4578  0.1089
 A8  0.0868  0.1039  0.0715  0.0091  0.0001  0.2538 -0.9885  0.1046
 A9  0.0577  0.0647  0.0494  0.0047  0.0000 -0.2852 -1.3624  0.0807
 A10  0.0639  0.0734  0.0554  0.0053  0.0000  0.2339 -1.3156  0.0826
 A11  0.0806  0.0992  0.0687  0.0095  0.0001  0.9569 -0.4535  0.1178
 A12  0.0541  0.0607  0.0488  0.0034  0.0000  0.4575 -1.0154  0.0636
 A13  0.0702  0.0816  0.0602  0.0062  0.0000  0.2458 -1.2380  0.0876
 A14  0.0524  0.0581  0.0461  0.0033  0.0000 -0.2151 -1.0294  0.0638
 A15  0.0391  0.0428  0.0351  0.0021  0.0000 -0.2569 -0.8675  0.0545

Table B.5 
Decision data for the comparison MADM methods.

𝑣𝑖𝑗  C1  C2  C3  C4  C5  C6  C7  C8
 A1  0.0863  0.0709  0.0361  0.0899  0.0449  0.0816  0.0476  0.0730
 A2  0.0487  0.0419  0.1091  0.0371  0.0862  0.0279  0.0504  0.0880
 A3  0.1399  0.1269  0.0737  0.0391  0.0463  0.0677  0.1067  0.0448
 A4  0.0585  0.0466  0.0760  0.1251  0.0145  0.0827  0.0620  0.0498
 A5  0.1195  0.0878  0.0557  0.0782  0.0588  0.0763  0.0735  0.0481
 A6  0.0495  0.0641  0.0609  0.0410  0.0169  0.1439  0.0807  0.0332
 A7  0.0258  0.1465  0.0685  0.0743  0.1361  0.0816  0.0706  0.0349
 A8  0.1092  0.0277  0.0376  0.1309  0.2043  0.0677  0.0432  0.1544
 A9  0.0323  0.0756  0.0677  0.0254  0.0409  0.0644  0.0966  0.0465
 A10  0.0724  0.0297  0.0842  0.0254  0.0703  0.0376  0.0504  0.0664
 A11  0.0659  0.0547  0.1031  0.0762  0.0304  0.1117  0.0894  0.0946
 A12  0.0458  0.0689  0.0752  0.0879  0.0668  0.0269  0.0706  0.0614
 A13  0.0458  0.0729  0.0812  0.0489  0.1111  0.0730  0.0749  0.0365
 A14  0.0548  0.0520  0.0451  0.0645  0.0553  0.0387  0.0375  0.0581
 A15  0.0450  0.0338  0.0271  0.0528  0.0169  0.0279  0.0476  0.1145
𝑤

𝑗  0.2444  0.1481  0.1329  0.0512  0.2007  0.0931  0.0694  0.0602
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